Exam I
 Section I
 Part A - No Calculators

1. A p. 1
$y=f(x)$ is decreasing if and only if $f^{\prime}(x)<0$
$f^{\prime}(x)=\ln (x-2)<0$ occurs if and only if $0<x-2<1$.
This happens if and only if $2<x<3$.
2. B p. 1
$y=x \cos x$
$\frac{d y}{d x}=\cos x-x \sin x$
$\cos x-x \sin x=0$
$\cos x=x \sin x$
$\frac{1}{x}=\tan x$
3. E p. 2

With $F(x)=G[x+G(x)]$, the Chain Rule gives
$F^{\prime}(x)=G^{\prime}[x+G(x)] \cdot\left(1+G^{\prime}(x)\right)$
Then $F^{\prime}(1)=G^{\prime}[1+G(1)] \cdot\left(1+G^{\prime}(1)\right)$
From the graph of the function G, we find $G(1)=3$.
Hence $F^{\prime}(1)=G^{\prime}[1+3] \cdot\left(1+G^{\prime}(1)\right)$

$$
=G^{\prime}(4) \cdot\left(1+G^{\prime}(1)\right)
$$

From the graph of G we can determine that $G^{\prime}(4)=\frac{2}{3}$ and $G^{\prime}(1)=-2$.
Thus, $\mathrm{F}^{\prime}(1)=\frac{2}{3} \cdot(-1)=-\frac{2}{3}$.
4. C p. 2

$$
\begin{aligned}
\int_{2}^{6}\left[\frac{1}{x}+2 x\right] d x & \left.=\ln |x|+x^{2}\right]_{2}^{6} \\
& =(\ln 6+36)-(\ln 2+4)=\ln \frac{6}{2}+32=\ln 3+32
\end{aligned}
$$

5. E p. 2
$f(x)=\frac{(\ln x)^{2}}{x}$
$f^{\prime}(x)=\frac{x \cdot 2(\ln x) \cdot \frac{1}{x}-(\ln x)^{2}}{x^{2}}=\frac{(\ln x) \cdot(2-\ln x)}{x^{2}}$
The critical numbers are $x=1$ and $x=e^{2}$.

$x>e^{2}$	\Rightarrow	$\mathrm{f}^{\prime}(\mathrm{x})<0$	\Rightarrow	f is decreasing.
$1<\mathrm{x}<\mathrm{e}^{2}$	\Rightarrow	$\mathrm{f}^{\prime}(\mathrm{x})>0$	\Rightarrow	f is increasing.
$0<\mathrm{x}<1$	\Rightarrow	$\mathrm{f}^{\prime}(\mathrm{x})<0$	\Rightarrow	f is decreasing.

The relative maximum is at $x=e^{2}$.
6. D p. 3

Graph the function $f(x)=|2 x-3|$ on the interval $[-1,3]$. Since the interval has length 4 and the Riemann sum is to have 4 equal subdivisions, each subdivision has length 1 . Since it is to be a right-hand Riemann sum, we use function values at the right-hand ends of the intervals; that is, at $x=0,1,2$, and 3 .
$\begin{aligned} R_{4} & =1 \cdot[f(0)+f(1)+f(2)+f(3)] \\ & =1 \cdot[3+1+1+3]=8\end{aligned}$

7. A p. 3
$y=x^{3}+3 x^{2}+2 \quad \Rightarrow \quad \frac{d y}{d x}=3 x^{2}+6 x$
$\frac{d^{2} y}{d x^{2}}=6 x+6=0 \quad \Rightarrow \quad \Rightarrow \quad-1 \quad\left\{\begin{array}{c}y=4 \\ \frac{d y}{d x}=-3\end{array}\right.$
Hence the point of inflection is $(-1,4)$ and the slope of the tangent is -3 .
Then the equation of the tangent is $y-4=-3(x+1)$, so $y=-3 x+1$.
8. D p. 3

$$
\begin{aligned}
\int \cos (3-2 x) d x & =-\frac{1}{2} \int(-2) \cos (3-2 x) d x \\
& =-\frac{1}{2} \sin (3-2 x)+C
\end{aligned}
$$

9. B p. 4

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{2}+2}}{4 x+3}=\lim _{x \rightarrow \infty} \frac{x \sqrt{9+\frac{2}{x^{2}}}}{4 x+3}=\lim _{x \rightarrow \infty} \frac{\sqrt{9+\frac{2}{x^{2}}}}{4+\frac{3}{x}}=\frac{3}{4}
$$

10. B p. 4

Each cross section perpendicular to the $x-$ axis (at coordinate x) is a semicircle of radius $\frac{1}{2 x}$. The cross-sectional area is
$\frac{1}{2} \pi\left(\frac{1}{2 x}\right)^{2}$
Hence the volume of the solid is given by:

$$
V=\int_{1}^{4} \frac{1}{2} \pi\left(\frac{1}{2 x}\right)^{2} d x=\frac{\pi}{8} \int_{1}^{4} \frac{1}{x^{2}} d x=\frac{\pi}{8}\left(-\frac{1}{x}\right]_{1}^{4}=\frac{\pi}{8}\left(-\frac{1}{4}+1\right)=\frac{3 \pi}{32} .
$$

11. A p. 4
$f(x)=\ln x+e^{-x} \quad \Rightarrow \quad f^{\prime}(x)=\frac{1}{x}-e^{-x}$
Since $f^{\prime}(1)$ exists, (C) is False.
Since $f^{\prime}(1) \neq 0$, (D) and (E) are False.
Since $f^{\prime}(1)=1-\frac{1}{e}>0$, (A) is True and (B) is False.
12. E p. 5

We are given $F(x)=\int_{0}^{x^{2}} \frac{1}{2+t^{3}} d t$.
If we define $G(x)=\int_{0}^{x} \frac{1}{2+t^{3}} d t$, then $F(x)=G\left(x^{2}\right)$.
By the Chain Rule, $F^{\prime}(x)=G^{\prime}\left(x^{2}\right) \cdot(2 x)$.
By the Fundamental Theorem, $G^{\prime}(x)=\frac{1}{2+x^{3}}$, so that $G^{\prime}\left(x^{2}\right)=\frac{1}{2+\left(x^{2}\right)^{3}}$.
Then $F^{\prime}(x)=\frac{1}{2+\left(x^{2}\right)^{3}} \cdot(2 x)$, and finally $F^{\prime}(-1)=\frac{1}{2+1} \cdot(-2)=-\frac{2}{3}$.
13. C p. 5

$$
\begin{aligned}
\frac{1}{1-(-1)} \int_{-1}^{1}\left(2 t^{3}-3 t^{2}+4\right) d t & =\frac{1}{2}\left[\frac{t^{4}}{4}-t^{3}+4 t\right]^{1} \\
& =\frac{1}{2}\left[\left(\frac{1}{4}-1+4\right)-\left(\frac{1}{4}+1-4\right)\right]=\frac{1}{2} \cdot 6=3
\end{aligned}
$$

14. B p. 5

Draw a solution curve on the slope field. This looks like an up-side down cosine curve. That is, the solution of the differential equation for which we have a slope field is $y=-\cos x$.
The differential equation is $\frac{d y}{d x}=\sin x$.

15. B p. 6

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(x-1)(\sqrt{x}+1)} \\
& =\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(\sqrt{x}+1)}=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1}=\frac{1}{2}
\end{aligned}
$$

16. E p. 6
$y=\cos ^{2} x-\sin ^{2} x$
$y^{\prime}=-2 \cos x \sin x-2 \sin x \cos x=-4 \sin x \cos x$
17. C p. 6

$$
\begin{aligned}
\int_{1}^{2}\left(4 x^{3}+6 x-\frac{1}{x}\right) d x & =\left(x^{4}+3 x^{2}-\ln |x|\right]_{1}^{2} \\
& =(16+12-\ln 2)-(1+3-\ln 1)=(24-\ln 2)
\end{aligned}
$$

18. C p. 7

$$
\int \frac{x-2}{x-1} d x=\int \frac{(x-1)-1}{x-1} d x=\int\left[1-\frac{1}{x-1}\right] d x=x-\ln |x-1|+C
$$

19. B p. 7

The property that $g(-x)=g(x)$ for all x means that the function g is even. Its symmetry around the y-axis guarantees that $g^{\prime}(-a)=-g^{\prime}(a)$.
More formally, differentiating the first property gives

$$
g^{\prime}(-x) \cdot(-1)=g^{\prime}(x) .
$$

Thus

$$
g^{\prime}(-x)=-g^{\prime}(x)
$$

20. A p. 7
$y=\operatorname{Arctan} \frac{x}{3}$
$y^{\prime}=\frac{1}{3} \frac{1}{1+\frac{x^{2}}{9}}=\frac{3}{9+x^{2}}$. This implies that $y^{\prime}(0)=\frac{1}{3}$.
Hence the line goes through the origin with slope $\frac{1}{3}$.
Its equation is $y-0=\frac{1}{3}(x-0)$, which can be written $x-3 y=0$.
21. C p. 8

Solution I.
With a reasonably careful graph, it is possible to obtain an estimate of the definite integral by counting the squares under the graph of $f(x)$ on the interval $[0,3]$.

Solution II. Having determined that the change in the function definition occurs at $x=1$, evaluate $\int_{0}^{3} f(x) d x$.

This is done in two parts, as:

$$
\begin{aligned}
\int_{0}^{3} f(x) d x & =\int_{0}^{1}\left(x^{2}+4\right) d x+\int_{1}^{3}(6-x) d x \\
& =\left[\frac{x^{3}}{3}+4 x\right]^{1}+\left[6 x-\frac{x^{2}}{2}\right]^{3} \\
& =\left[\frac{1}{3}+4\right]-0+\left[18-\frac{9}{2}\right]-\left(6-\frac{1}{2}\right)=12+\frac{1}{3}
\end{aligned}
$$

22. B p. 8
$\frac{d}{d x}\left(\ln e^{3 x}\right)=\frac{d}{d x}(3 x \ln e)=\frac{d}{d x}(3 x)=3$
23. D p. 8
$g^{\prime}(x)=2 g(x) \quad \Rightarrow \quad \frac{g^{\prime}(x)}{g(x)}=2$
Integrating gives $\ln |g(x)|=2 x+C$
Then $g(x)=e^{2 x+C}$
Using the initial condition that $g(-1)=1$, we have

$$
g(-1)=e^{-2+C}=1 \quad \Rightarrow \quad C=2
$$

Hence

$$
g(x)=e^{2 x+2}
$$

The notation is simpler if we let $y=g(x)$. Then the equation is $y^{\prime}=2 y$. The solution proceeds as before.
$\begin{aligned} y^{\prime}=2 y \Rightarrow \frac{y^{\prime}}{y}=2 & \Rightarrow \ln |y|=2 x+C \\ & \Rightarrow y= \pm e^{2 x+C} \text { Since } g(-1)=1, y=e^{2 x+C}\end{aligned}$
24. D p. 9

We antidifferentiate the acceleration function to obtain the velocity.

$$
\begin{array}{llll}
a(t)=3 t+2 & \Rightarrow & v(t)=\frac{3}{2} t^{2}+2 t+C & \\
v(1)=4 & \Rightarrow & 4=\frac{3}{2}+2+C \quad \Rightarrow \quad C=\frac{1}{2}
\end{array}
$$

Thus $v(t)=\frac{3}{2} t^{2}+2 t+\frac{1}{2}$
Antidifferentiate again to obtain $x(t)=\frac{1}{2} t^{3}+t^{2}+\frac{1}{2} t+D$
$x(1)=6 \quad \Rightarrow \quad 6=\frac{1}{2}+1+\frac{1}{2}+D \quad \Rightarrow \quad D=4$
Then the position function is $x(t)=\frac{1}{2} t^{3}+t^{2}+\frac{1}{2} t+4$.
Hence $x(2)=4+4+1+4=13$.
25. B p. 9
$y=\sqrt{3+e^{x}}$ passes through $(0,2)$.
$\frac{d y}{d x}=\frac{e^{x}}{2 \sqrt{3+e^{x}}}$; when $x=0$, this has a value of $\frac{1}{4}$.
The equation of the tangent line at $(0,2)$ is $y-2=\frac{1}{4} x$, or $y=2+\frac{1}{4} x$.
When $\mathrm{x}=0.08, \mathrm{y}=2+\frac{1}{4}(.08)=2.02$.
26. B p. 9

For $1<\mathrm{t}<3$, the leaf rises 5 feet in 2 seconds.
For $3<t<5$, the leaf falls 10 feet in 2 seconds.
For $5<t<7$, the leaf rises 3 feet in 2 seconds.
For $7<\mathrm{t}<9$, the leaf falls 8 feet in 2 seconds.

$$
\begin{aligned}
& \mathrm{s}=\frac{5}{2}=2.5 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~s}=\frac{10}{2}=5 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~s}=\frac{3}{2}=1.5 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~s}=\frac{8}{2}=4 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Since the slope of the graph is constant on each of these intervals, the only other interval of interest is $0<t<1$. During that period, the leaf rises 1.5 feet in 1 second. Then $\mathrm{s}=\frac{1.5}{1}=1 \mathrm{ft} / \mathrm{sec}$.
The maximum speed is $5 \mathrm{ft} / \mathrm{sec}$, occurring in the interval $3<\mathrm{t}<5$.
27. C p. 10

Differentiating the given volume function with respect to t gives

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\pi\left(12 \mathrm{~h}-\mathrm{h}^{2}\right) \frac{\mathrm{dh}}{\mathrm{dt}}
$$

We know $\frac{\mathrm{dV}}{\mathrm{dt}}=30 \pi \mathrm{ft}^{3} / \mathrm{sec}$, and are interested in $\frac{\mathrm{dh}}{\mathrm{dt}}$ when $\mathrm{h}=2 \mathrm{ft}$. Substituting these values, we have
$30 \pi=\pi\left(12 \cdot 2-2^{2}\right) \frac{\mathrm{dh}}{\mathrm{dt}}$. Hence $\frac{\mathrm{dh}}{\mathrm{dt}}=\frac{30 \pi}{20 \pi}=1.5 \mathrm{ft} / \mathrm{hr}$.
28. E p. 10
$f(x)=2 x^{5 / 3}-5 x^{2 / 3} \Rightarrow f^{\prime}(x)=\frac{10}{3} x^{2 / 3}-\frac{10}{3} x^{-1 / 3}=\frac{10}{3} x^{-1 / 3}(x-1)$
The function f has two critical numbers:
$x=1$ (where $\left.f^{\prime}(x)=0\right)$ and $x=0$ (where $f^{\prime}(x)$ is undefined).
To deiermine the sign of the first derivative, we consider the intervals into which these critical numbers divide the domain of the function.

	$\mathrm{x}<0$	$0<\mathrm{x}<1$	$\mathrm{x}>1$
$\mathrm{x}^{-1 / 3}$	-	+	+
$\mathrm{x}-1$	-	-	+
$\mathrm{f}^{\prime}(\mathrm{x})$	+	-	+

$f(x)$ is increasing if and only if $f^{\prime}(x)>0$. This occurs if $x<0$ or $x>1$.

Exam I

Section I
Part B - Calculators Permitted

1. D p. 11
I. $\lim _{x \rightarrow 1} f(x)=-2$
False
II. $\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(2+\mathrm{h})-\mathrm{f}(2)}{\mathrm{h}}=\mathrm{f}^{\prime}(2)=2$

True
III. $\lim _{x \rightarrow-1^{+}} f(x)=1=f(-3)$

True
2. C p. 11
$f(x)=\sin ^{2} x \quad \Rightarrow \quad f^{\prime}(x)=2 \sin x \cos x=\sin (2 x)$
$g(x)=.5 x^{2} \quad \Rightarrow \quad g^{\prime}(x)=x$
From a calculator graph of the functions f^{\prime} and g^{\prime}, we see the only possible solution is $\mathrm{x}=0.9$.
3. B p. 12

Here are two possible calculator solutions.
I. First, look at graphs of the functions f and g, and find those intervals where the graph of f is above the graph of g.

The cubic function $f(x)$ is above the quadratic function $g(x)$ when x is between 0 and 2. Thus, the integral of f will have a larger value than the integral of g on the intervals $[0,2]$.
II. Second, use the calculator to evaluate these definite integrals on the intervals [a,b] indicated.

| | $\int_{a}^{b} f(x) d x$ | $\int_{a}^{b} g(x) d x$ | |
| ---: | :--- | :---: | :---: | :--- |
| I. $a=-1$ $b=0$.917 1.333
 II. $a=0$ $b=2$ 1.333 -1.333 False
 III. $a=2$ $b=3$ -3.583 1.333 | False | | |

4. E p. 12
$y^{2}-3 x=7 \quad \Rightarrow \quad 2 y \frac{d y}{d x}-3=0$
$\frac{d y}{d x}=\frac{3}{2 y}$
$\frac{d^{2} y}{d x^{2}}=\frac{2 y \cdot 0-3 \cdot 2 \frac{d y}{d x}}{4 y^{2}}=\frac{-6 \cdot \frac{3}{2 y}}{4 y^{2}}=-\frac{9}{4 y^{3}}$
5. D p. 12
I. $h(0)=g(f(0))=g(5)=0$

False
II. $h^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$

Thus $h^{\prime}(2)=g^{\prime}(f(2)) \cdot f^{\prime}(2)$

$$
=\mathrm{g}^{\prime}(1) \cdot\left(-\frac{1}{4}\right)=(-2) \cdot\left(-\frac{1}{4}\right)>0
$$

True
True
6. D p. 13

If (x, e^{x}) is on the curve, then its distance from the origin is $D=\sqrt{x^{2}+e^{2 x}}$. Use a calculator graph of this distance function and find its minimum.

At $x=-0.426$, the minimum distance of 0.78 is achieved.
7. B p. 13

In the figure, we need the area of the region ODBC. This can be calculated as area of trapezoid $O A B C$ - area DAB. The coordinates of points B and D are found using the calculator. Then the desired area is

$$
\begin{aligned}
a & =\int_{0}^{1.858}(4-x) d x-\int_{.739}^{1.858}(x-\cos x) d x \\
& \approx 4.54 .
\end{aligned}
$$

8. C p. 13
$y=2 x+\cos \left(x^{2}\right)$
$y^{\prime}=2-2 x \sin \left(x^{2}\right)$
$y^{\prime \prime}=-2 \sin \left(x^{2}\right)-4 x^{2} \cos \left(x^{2}\right)$
Graph the second derivative on the interval $[0,5]$. There are eight zeros at which the sign changes. Each corresponds to an inflection point on the graph of $y=f(x)$.
9. C p. 14
$\frac{d V}{d t}=\sqrt{1+2^{t}} \quad \Rightarrow \quad V=\int_{0}^{5} \sqrt{1+2^{t}} d t \approx 14.53 \mathrm{ft}^{3}$.
10. C p. 14

We use the disk (washer) method. $V=\pi \int_{1}^{6}[f(x)]^{2} d x$
Using the Trapezoid Rule with five subintervals to approximate this, we obtain

$$
\begin{aligned}
\mathrm{V} \approx \mathrm{~T}_{5} & =\frac{\pi}{2}\left[\mathrm{f}^{2}(1)+2 \cdot \mathrm{f}^{2}(2)+2 \cdot \mathrm{f}^{2}(3)+2 \cdot \mathrm{f}^{2}(4)+2 \cdot \mathrm{f}^{2}(5)+\mathrm{f}^{2}(6)\right] \\
& =\frac{\pi}{2}\left[2^{2}+2 \cdot 3^{2}+2 \cdot 4^{2}+2 \cdot 3^{2}+2 \cdot 2^{2}+1^{2}\right] \\
& =\frac{\pi}{2} \cdot 81 \approx 127
\end{aligned}
$$

11. E p. 14

Solution I. We can do the problem algebraically:
Given the position function $x(t)=(t+1)(t-3)^{3}$,
we differentiate to obtain the velocity function:

$$
v(t)=(t+1) \cdot 3(t-3)^{2}+(t-3)^{3}=4 t(t-3)^{2}
$$

For the velocity to be increasing, we need $v^{\prime}(t)>0$.
$\mathrm{v}^{\prime}(\mathrm{t})=(\mathrm{t}-3)^{2} \cdot 4+(4 \mathrm{t}) \cdot 2(\mathrm{t}-3)=12(\mathrm{t}-3)(\mathrm{t}-1)$.
We find that $v^{\prime}(t)>0$ if $t>3$ or $t<1$.
Solution II. Alternatively, we can do the problem graphically. Given the position $x(t)$, the velocity is $v(t)=x^{\prime}(t)$.
For the velocity to be increasing, we need $v^{\prime}(t)>0$. That is to say, we need
 $x^{\prime \prime}(t)>0$; hence we want the graph of $x(t)$ to be concave up. From the graph of $x(t)$ shown, we recognize that the curve is concave up when $x<1$ and again when $x>3$.
12. E p. 15
$f(x)=\frac{\ln e^{2 x}}{x-1}=\frac{2 x}{x-1}$.
The inverse of this function is found by solving $x=\frac{2 y}{y-1}$ for y.
$x=\frac{2 y}{y-1} \quad \Rightarrow \quad x y-x=2 y \quad \Rightarrow \quad x y-2 y=x \quad \Rightarrow \quad y(x-2)=x$
$\Rightarrow \quad g(x)=y=\frac{x}{x-2}$
Then $\mathrm{g}^{\prime}(\mathrm{x})=\frac{(\mathrm{x}-2)-\mathrm{x}}{(\mathrm{x}-2)^{2}}=\frac{-2}{(\mathrm{x}-2)^{2}}$. Hence $\mathrm{g}^{\prime}(3)=-2$.
13. C p. 15

Divide the integrand fraction and rewrite the second term.

$$
\begin{aligned}
\int \frac{e^{x^{2}}-2 x}{e^{x^{2}}} d x=\int\left[1-\frac{2 x}{e^{x^{2}}}\right] d x & =\int\left[1-2 x e^{-x^{2}}\right] d x \\
& =\int\left[1+e^{-x^{2}}(-2 x)\right] d x
\end{aligned}
$$

In the second term of the integrand, the factor $(-2 x)$ is the derivative of the exponent in the factor $e^{-x^{2}}$. Hence we can perform the antidifferentiation:

$$
\int\left[1+e^{-x^{2}}(-2 x)\right] d x=x+e^{-x^{2}}+C
$$

14. D p. 16

$$
\begin{aligned}
f(x) & =(x+2)^{5}\left(x^{2}-1\right)^{4} \\
f^{\prime}(x) & =5(x+2)^{4}\left(x^{2}-1\right)^{4}+4\left(x^{2}-1\right)^{3}(2 x)(x+2)^{5} \\
& =(x+2)^{4}\left(x^{2}-1\right)^{3}\left[5\left(x^{2}-1\right)+8 x(x+2)\right] \\
& =(x+2)^{4}(x+1)^{3}(x-1)^{3}\left[13 x^{2}+16 x-5\right]
\end{aligned}
$$

The five critical points occur at $x=-2, x= \pm 1$, and at the two real solutions of the last quadratic factor. For the latter, $D=b^{2}-4 a c=16^{2}-4(13)(-5)=516$. Since $D>0$, there are two real solutions.
15. B p. 16

For continuity, $\quad \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \quad \Rightarrow \quad 3+3 b=m+b$

For differentiability, $\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}} f^{\prime}(x) \quad \Rightarrow \quad 3 b+4=m$

We solve these two equations simultaneously:

$$
\left\{\begin{array}{l}
2 b+3=m \\
3 b+4=m
\end{array} \quad \Rightarrow \quad b=-1 \text { and } m=1 .\right.
$$

16. D p. 17

Solution I. On each two-second time interval, we can approximate the speed by using the average of the speeds at the beginning and the end of the interval.

On the interval $[0,2]$, speed $\approx 33 \mathrm{ft} / \mathrm{sec}$. Distance traveled $\approx 66 \mathrm{ft}$.
On the interval $[2,4]$, speed $\approx 38 \mathrm{ft} / \mathrm{sec}$. Distance traveled $\approx 76 \mathrm{ft}$.
On the interval $[4,6]$, speed $\approx 44 \mathrm{ft} / \mathrm{sec}$. Distance traveled $\approx 88 \mathrm{ft}$.
On the interval $[6,8]$, speed $\approx 51 \mathrm{ft} / \mathrm{sec}$. Distance traveled $\approx 102 \mathrm{ft}$.
On the interval $[8,10]$, speed $\approx 57 \mathrm{ft} / \mathrm{sec}$. Distance traveled $\approx 114 \mathrm{ft}$. If we add these approximate distances traveled, we obtain 446 ft .

Solution II. Since $v(t)>0$, on the interval [0,10], the distance is the value of the integral $\int_{0}^{10} v(t) d t$.
Using Left and Right Riemann Sums, we approximate the integral as follows: $\quad L_{5}=2[30+36+40+48+54]=416$

$$
R_{5}=2[36+40+48+54+60]=476
$$

Distance $=\int_{0}^{10} v(t) d t=\frac{L_{5}+R_{5}}{2}=\frac{416+476}{2}=446$
17. E p. 17

Rewrite the given formula: $F(x)=-5+\int_{2}^{x} \sin \left(\frac{\pi t}{4}\right) d t$.
We obtain $\mathrm{F}^{\prime}(x)$ by using the Fundamental Theorem:

$$
F^{\prime}(x)=0+\sin \left(\frac{\pi x}{4}\right)
$$

We can then evaluate both $F(2)$ and $F^{\prime}(2)$.
$F(2)=-5+\int_{2}^{2} \sin \left(\frac{\pi t}{4}\right) d t=-5+0=-5$
$F^{\prime}(2)=\sin \left(\frac{2 \pi}{4}\right)=\sin \frac{\pi}{2}=1$.
Then $F(2)+F^{\prime}(2)=-5+1=-4$.

Exam I
 Section II
 Part A - Calculators Permitted

1. p. 19
(a) Since the graph of f is a straight line here, $f^{\prime}(3)=$ slope $=\frac{-3-3}{4-2}=-3$.
$2:\left\{\begin{array}{l}1: \text { difference quotient } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { difference quotient } \\ 1: \text { answer }\end{array}\right.$
(c) $\quad h(x)=g[f(x)]$
i) $h(2)=g[f(2)]=g(3)=0$.
ii) $\quad h^{\prime}(x)=g^{\prime}[f(x)] \cdot f^{\prime}(x)$

$$
h^{\prime}(3)=g^{\prime}[f(3)] \cdot f^{\prime}(3)=g^{\prime}(0) \cdot(-3)=\frac{3}{2}(-3)=-\frac{9}{2}
$$

(d) Using areas, we approximate $\int_{0}^{4} f(x) d x$ as a trapezoid plus a triangle minus a triangle.

$$
\int_{0}^{4} f(x) d x=\frac{1}{2}(2)(1+3)+\frac{1}{2}(1)(3)-\frac{1}{2}(1)(3)=4
$$

2. p. 20
(a)

To find the coordinates of Q , we write the equation of the tangent to the graph of $y=f(x)$ at the point $P(-2,8)$.
$f^{\prime}(x)=3 x^{2}+6 x-1$.
Using $x=-2$, we find $f^{\prime}(-2)=12-12-1=-1$. The line through the point $P(-2,8)$ with slope $m=-1$ is $y-8=-1(x+2)$ which can be rewritten: $\mathrm{y}=-\mathrm{x}+6$.
We now solve simultaneously the equation of the cubic and the equation of the tangent line.
$\left\{\begin{array}{l}y=x^{3}+3 x^{2}-x+2 \\ y=-x+6\end{array}\right.$

$$
\begin{array}{ll}
\Rightarrow & x^{3}+3 x^{2}-x+2=-x+6 \\
\Rightarrow & x^{3}+3 x^{2}-4=0 \\
\Rightarrow & (x+2)\left(x^{2}+x-2\right)=0 \\
\Rightarrow & (x+2)(x+2)(x-1)=0
\end{array}
$$

There is the known intersection point where $x=-2$. The new point has an x-coordinate of $x=1$. The corresponding y-coordinate is $y=5$.
Hence Q is the point $(1,5)$.
(b) To find the inflection point R, we need $f^{\prime \prime}(x)$.
$f^{\prime \prime}(x)=6 x+6$.
$f^{\prime \prime}(x)=0$ if and only if $x=-1$.
When $x=-1$, the cubic function has a y-value of 5 .
At $x=-1$, the value of $f^{\prime \prime}(x)$ changes from negative to zero to positive,
hence the point of inflection of the graph of f occurs at $R(-1,5)$.
(c) Shown to the right is a graph of the function f, with the points $P(-2,8)$, $Q(1,5)$, and $R(-1,5)$ identified. To find the areas of the two regions described, we determine the area of the combined region $A \cup B$ and then determine the area of the larger of the two regions, region A .

Area of region $A \cup B=\int_{-2}^{1}\left[(-x+6)-\left(x^{3}+3 x^{2}-x+2 d x\right)\right]=6.75$.
Area of region $A=\int_{-1}^{1}\left[5-\left(x^{3}+3 x^{2}-x+2\right)\right] d x=4$.
By subtraction, Area of region $B=2.75$.
The ratio of these areas is $\frac{\text { Area of region } \mathrm{A}}{\text { Area of region } \mathrm{B}}=\frac{4}{2.75}=\frac{16}{11}=1.455$.
$2:\left\{\begin{array}{l}1: f^{\prime \prime}(x)=0 \\ 1: \text { inflection pt }\end{array}\right.$
$4:\left\{\begin{array}{l}1: \text { area of region } A \\ 1: \text { area of region } B \\ 2: \text { ratio }\end{array}\right.$

3. p. 21

(a) Solution I.

Since the line $y=3 x+c$ has slope $\mathrm{m}=3$, we find the point on the curve $y^{2}=6 x$ where the tangent has slope 3 .

2: answer

Solution II.
Differentiating implicitly, we have $2 y \cdot \frac{d y}{d x}=6$.
Since $\frac{d y}{d x}=3$, then $y=1$ and therefore $x=\frac{1}{6}$.
The particular line that passes through $\left(\frac{1}{6}, 1\right)$ is obtained by using those coordinates in $y=3 x+c$. We find $c=\frac{1}{2}$.
We see from the graph above that if c is made smaller than the value that gives tangency, there will be two intersections.
Hence we want $\mathrm{c}<\frac{1}{2}$.
Solving the two equations $y^{2}=6 x$ and $y=3 x+c$ simultaneously leads to

$$
\begin{equation*}
y^{2}-2 y+2 c=0 \tag{*}
\end{equation*}
$$

This has two solutions if its discriminant is positive.
$4-8 c>0 \Rightarrow 4>8 c \Rightarrow \quad \frac{1}{2}>c$.
(b) Substituting $c=-\frac{3}{2}$ into equation $(*)$ above gives $y^{2}-2 y-3=0$.

Thus $(y-3)(y+1)=0$, so $y=-1$ or 3 .
Then $x=\frac{y+3 / 2}{3}$ and $x=\frac{y^{2}}{6}$ express the curves with x in terms of y.
The area of the region can be written: $\quad \operatorname{area}=\int_{-1}^{3}\left[\frac{y+3 / 2}{3}-\frac{y^{2}}{6}\right] d y$
With a calculator, this is evaluated as $\frac{16}{9}=1.778$.
(c) Substituting $\mathrm{c}=0$ into equation ($*$) gives $\mathrm{y}^{2}-2 \mathrm{y}=0$.

Thus $y(y-2)=0$. Hence $y=0$ or $y=2$, so $x=0$ or $x=\frac{2}{3}$.
By the washer method,
3: $\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$\mathrm{Vol}=\pi \int_{0}^{2 / 3}\left(6 x-9 x^{2}\right) d x=\pi\left[3 x^{2}-3 x^{3}\right]_{0}^{2 / 3}=\pi\left[3 \cdot \frac{4}{9}-3 \cdot \frac{8}{27}\right]=\frac{4 \pi}{9}=1.396$

Exam I
 Section II
 Part B — No Calculators

4. p. 22
(a) We calculate slopes at each of the fourteen points.
At $(-2,2), m=-4 . \quad$ At $(-1,2), m=-3$.
At $(0,2), m=-2$.
At $(2,2), m=0$.
At $(1,2), \mathrm{m}=-1$.

At $(0,1), m=-1$.
At $(-1,1), \mathrm{m}=-2$.
At $(2,1), m=1$.
At $(1,1), \mathrm{m}=0$.
At $(0,0), m=0$.
At $(0,-1), m=1$.
At $(-1,-1), \mathrm{m}=0$.
At $(0,-1), m=1$.
Then draw short line segments through each of the points with the appropriate slope.
(b)

(c) At the point $(1,0), \frac{d y}{d x}=1-0=1$. Hence the slope of the straight line solution must be $\mathrm{m}=1$. The line through the point $(1,0)$ with slope $\mathrm{m}=$ 1 is $y-0=1(x-1)$.
Hence the solution is $y=x-1$.
(d) Given the function $y=x-1+C e^{-x}$, we have $\frac{d y}{d x}=1-C e^{-x}$.

We can also write the expression $x-y$ in terms of x :
$x-y=x-\left(x-1+C e^{-x}\right)$.
This simplifies to $x-y=1-C e^{-x}$.
$2:\left\{\begin{array}{l}1: \text { slope } \\ 1: \text { tangent equation }\end{array}\right.$
$\int 1: \frac{d y}{d x}=1-C e^{-x}$
3: 1 : substitution
1: conclusion

Thus, if $y=x-1+C e^{-x}$, then $\frac{d y}{d x}=x-y$.

Solution curve must
1:go through $(-1,1)$;
1 follow the given
2: \quad slope lines and extend
to the boundary of the slope field.

5. p. 23

(a) $f^{\prime}(3)=2$. Hence the slope of the tangent line at the point $(3,1)$ is $\mathrm{m}=2$. Then an equation of the tangent line (in point-slope form) is:

$$
y-1=2(x-3) .
$$

(b) f has critical values at the points where $x=1$ and $x=-3$, because $\mathrm{f}^{\prime}(\mathrm{x})=0$.
To the immediate left of $x=1, f^{\prime}(x)<0$, implying f is decreasing there.
To the immediate right of $x=1, f^{\prime}(x)>0$, implying f is increasing there.
Since f is decreasing to the left of $x=1$ and increasing to the right of $x=1$, there is a local minimum there. Both to the left and right of $x=-3, f^{\prime}(x)<0$, so there is no relative \max / \min there.
(c) $f^{\prime \prime}(2)$ is the slope of the graph of $f^{\prime}(x)$ at $x=2$. Draw an estimate for the tangent line to $\mathrm{f}^{\prime}(\mathrm{x})$ at $\mathrm{x}=2$. Pick two points, such as $(1.2,1)$ and $(3,2.5)$, and the slope is $\frac{2.5-1}{3-1.2}=\frac{1.5}{1.8}=\frac{5}{6}$. (Any answer between 0.5 and 1.25 would be satisfactory.)
(d) f has an inflection point wherever f^{\prime} has a relative extreme point. This occurs at $x=-3,-1,3$.
(e) The only candidates for maximum value are the endpoints $x=0$ and $x=4$, and the critical number at $x=1$. In part (b) it was established that f has a local minimum at the $x=1$. So the maximum value occurs at 0
an endpoint. At $x=0, f(0)=\int_{0} f^{\prime}(x) d x=0$. Since the area of the region below the x-axis is smaller the the area of the region above the x-axis, 4
$f(4)=\int_{0} f^{\prime}(x) d x>0$. Hence f has its maximum value for that interval at the right-hand endpoint, $x=4$.
$2:\left\{\begin{array}{l}1: \text { slope } \\ 1: \text { tangent equation }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { justification }\end{array}\right.$

1:answer
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { justification }\end{array}\right.$

2:answer
6. p. 24

(a)

$$
\text { area }=\int_{0}^{\operatorname{Arccos} \mathrm{k}}(\cos x-k) d x=[\sin x-k x]_{0}^{\operatorname{Arccos} k}
$$

$$
\begin{aligned}
& =\sin (\operatorname{Arccos} k)-k \operatorname{Arccos} k \\
& =\sqrt{1-k^{2}}-k \operatorname{Arccos} k
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\text { Note: Letting } A=\operatorname{Arccos} k \text {, we } \\
\text { have } \cos A=k \text { and } \\
\sin A=\sqrt{1-\cos ^{2} x}=\sqrt{1-k^{2}}
\end{array}\right.
$$

(b) $\mathrm{k}=\frac{1}{2} \Rightarrow \mathrm{~A}=\frac{\sqrt{3}}{2}-\frac{1}{2} \operatorname{Arccos} \frac{1}{2}=\frac{\sqrt{3}}{2}-\frac{\pi}{6} \approx 0.342$
(c) In general, $A=\sqrt{1-k^{2}}-k \operatorname{Arccos} k$.

$$
\text { Then } \begin{aligned}
\frac{\mathrm{dA}}{\mathrm{dt}} & =\frac{-\mathrm{k} \frac{\mathrm{dk}}{\mathrm{dt}}}{\sqrt{1-\mathrm{k}^{2}}}-(\operatorname{Arccos} \mathrm{k}) \frac{\mathrm{dk}}{\mathrm{dt}}-\mathrm{k} \cdot \frac{-1}{\sqrt{1-\mathrm{k}^{2}}} \frac{\mathrm{dk}}{\mathrm{dt}} \\
& =\frac{\mathrm{dk}}{\mathrm{dt}}\left[\frac{-\mathrm{k}}{\sqrt{1-\mathrm{k}^{2}}}-\operatorname{Arccos} \mathrm{k}+\frac{\mathrm{k}}{\sqrt{1-\mathrm{k}^{2}}}\right] \\
& =(-\operatorname{Arccos} \mathrm{k}) \frac{\mathrm{dk}}{\mathrm{dt}}
\end{aligned}
$$

With $\mathrm{k}=\frac{1}{2}$ and $\frac{\mathrm{dk}}{\mathrm{dt}}=\frac{1}{\pi}$, we obtain $\frac{\mathrm{dA}}{\mathrm{dt}}=-\frac{\pi}{3} \cdot \frac{1}{\pi}=-\frac{1}{3}$.

