Exam I Section I Part A — No Calculators

1. A p.1

y = f(x) is decreasing if and only if f'(x) < 0 f'(x) = ln(x-2) < 0 occurs if and only if 0 < x-2 < 1. This happens if and only if 2 < x < 3.

2. B p.1

$$y = x \cos x$$

$$\frac{dy}{dx} = \cos x - x \sin x$$

$$\cos x - x \sin x = 0$$

$$\cos x = x \sin x$$

$$\frac{1}{x} = \tan x$$

3. E p. 2

With F(x) = G[x + G(x)], the Chain Rule gives $F'(x) = G'[x + G(x)] \cdot (1 + G'(x))$

Then
$$F'(1) = G'[1 + G(1)] \cdot (1 + G'(1))$$

From the graph of the function G, we find G(1) = 3.

Hence
$$F'(1) = G'[1+3] \cdot (1+G'(1))$$

= $G'(4) \cdot (1+G'(1))$

From the graph of G we can determine that $G'(4) = \frac{2}{3}$ and G'(1) = -2. Thus, $F'(1) = \frac{2}{3} \cdot (-1) = -\frac{2}{3}$.

4. C p. 2

$$\int \left[\frac{1}{x} + 2x \right] dx = \ln |x| + x^2 \Big]_2^6$$

$$= (\ln 6 + 36) - (\ln 2 + 4) = \ln \frac{6}{2} + 32 = \ln 3 + 32$$

$$f(x) = \frac{(\ln x)^2}{x}$$

$$f'(x) = \frac{x \cdot 2 (\ln x) \cdot \frac{1}{x} - (\ln x)^2}{x^2} = \frac{(\ln x) \cdot (2 - \ln x)}{x^2}$$

The critical numbers are x = 1 and $x = e^2$.

$$x > e^2$$
 \Rightarrow f'(x) < 0 \Rightarrow f is decreasing.

$$1 < x < e^2$$
 \Rightarrow f'(x) > 0 \Rightarrow f is increasing.
 $0 < x < 1$ \Rightarrow f'(x) < 0 \Rightarrow f is decreasing.

The relative maximum is at $x = e^2$.

6. D p. 3

Graph the function f(x) = |2x - 3| on the interval [-1,3]. Since the interval has length 4 and the Riemann sum is to have 4 equal subdivisions, each subdivision has length 1. Since it is to be a right-hand Riemann sum, we use function values at the right-hand ends of the intervals; that is, at x = 0, 1, 2, and 3.

$$y = x^3 + 3x^2 + 2$$
 \Rightarrow $\frac{dy}{dx} = 3x^2 + 6x$

$$\frac{d^2y}{dx^2} = 6x + 6 = 0 \qquad \Rightarrow \qquad x = -1 \qquad \Rightarrow \qquad \begin{cases} y = 4 \\ \frac{dy}{dx} = -3 \end{cases}$$

Hence the point of inflection is (-1,4) and the slope of the tangent is -3. Then the equation of the tangent is y-4=-3(x+1), so y=-3x+1.

$$\int \cos(3-2x) dx = -\frac{1}{2} \int (-2) \cos(3-2x) dx$$
$$= -\frac{1}{2} \sin(3-2x) + C$$

9. B p.4

$$\lim_{x \to \infty} \frac{\sqrt{9x^2 + 2}}{4x + 3} = \lim_{x \to \infty} \frac{x\sqrt{9 + \frac{2}{x^2}}}{4x + 3} = \lim_{x \to \infty} \frac{\sqrt{9 + \frac{2}{x^2}}}{4 + \frac{3}{x}} = \frac{3}{4}$$

10. B p. 4

Each cross section perpendicular to the x-axis (at coordinate x) is a semicircle of radius $\frac{1}{2x}$. The cross-sectional area is

$$\frac{1}{2}\pi\left(\frac{1}{2x}\right)^2$$

Hence the volume of the solid is given by:

$$V = \int_{1}^{4} \frac{1}{2\pi} \left(\frac{1}{2x}\right)^{2} dx = \frac{\pi}{8} \int_{1}^{4} \frac{1}{x^{2}} dx = \frac{\pi}{8} \left(-\frac{1}{x}\right]_{1}^{4} = \frac{\pi}{8} \left(-\frac{1}{4} + 1\right) = \frac{3\pi}{32}.$$

11. A p. 4

$$f(x) = \ln x + e^{-x}$$
 \Rightarrow $f'(x) = \frac{1}{x} - e^{-x}$

Since f'(1) exists, (C) is False.

Since $f'(1) \neq 0$, (D) and (E) are False.

Since $f'(1) = 1 - \frac{1}{e} > 0$, (A) is True and (B) is False.

12. E p. 5

We are given
$$F(x) = \int_{0}^{x^2} \frac{1}{2+t^3} dt$$
.

If we define
$$G(x) = \int_{0}^{x} \frac{1}{2+t^{3}} dt$$
, then $F(x) = G(x^{2})$.

By the Chain Rule, $F'(x) = G'(x^2) \cdot (2x)$.

By the Fundamental Theorem, $G'(x) = \frac{1}{2+x^3}$, so that $G'(x^2) = \frac{1}{2+(x^2)^3}$.

Then $F'(x) = \frac{1}{2 + (x^2)^3} \cdot (2x)$, and finally $F'(-1) = \frac{1}{2 + 1} \cdot (-2) = -\frac{2}{3}$.

13. C p. 5

$$\frac{1}{1-(-1)} \int_{-1}^{1} (2t^3 - 3t^2 + 4) dt = \frac{1}{2} \left[\frac{t^4}{4} - t^3 + 4t \right]_{-1}^{1}$$
$$= \frac{1}{2} \left[\left(\frac{1}{4} - 1 + 4 \right) - \left(\frac{1}{4} + 1 - 4 \right) \right] = \frac{1}{2} \cdot 6 = 3$$

14. B p. 5

Draw a solution curve on the slope field. This looks like an up-side down cosine curve. That is, the solution of the differential equation for which we have a slope field is $y = -\cos x$.

The differential equation is $\frac{dy}{dx} = \sin x$.

15. B p. 6

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{(x - 1)(\sqrt{x} + 1)}$$
$$= \lim_{x \to 1} \frac{x - 1}{(x - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

16. E p. 6

$$y = \cos^{2} x - \sin^{2} x$$

$$y' = -2\cos x \sin x - 2\sin x \cos x = -4\sin x \cos x$$

17. C p. 6

$$\int_{1}^{2} (4x^{3} + 6x - \frac{1}{x}) dx = (x^{4} + 3x^{2} - \ln|x|)_{1}^{2}$$
$$= (16 + 12 - \ln 2) - (1 + 3 - \ln 1) = (24 - \ln 2)$$

18. C p. 7

$$\int \frac{x-2}{x-1} dx = \int \frac{(x-1)-1}{x-1} dx = \int \left[1 - \frac{1}{x-1}\right] dx = x - \ln|x-1| + C$$

19. B p. 7

> The property that g(-x) = g(x) for all x means that the function g is even. Its symmetry around the y-axis guarantees that g'(-a) = -g'(a).

More formally, differentiating the first property gives

$$g'(-x) \cdot (-1) = g'(x).$$

$$g'(-x) = -g'(x).$$

20. A

$$y = Arctan \frac{x}{3}$$

 $y' = \frac{1}{3} \frac{1}{1 + \frac{x^2}{9}} = \frac{3}{9 + x^2}$. This implies that $y'(0) = \frac{1}{3}$.

Hence the line goes through the origin with slope $\frac{1}{3}$.

Its equation is $y-0=\frac{1}{3}(x-0)$, which can be written x-3y=0.

21. C p. 8

> Solution I. With a reasonably careful graph, it

is possible to obtain an estimate of the definite integral by counting the squares under the graph of f(x)

on the interval [0,3].

Solution II. Having determined that the change in the function definition

occurs at x = 1, evaluate $\int_{0}^{1} f(x) dx$.

This is done in two parts, as:

$$\int_{0}^{3} f(x) dx = \int_{0}^{1} (x^{2} + 4) dx + \int_{1}^{3} (6 - x) dx$$
$$= \left[\frac{x^{3}}{3} + 4x \right]_{0}^{1} + \left[6x - \frac{x^{2}}{2} \right]_{1}^{3}$$
$$= \left[\frac{1}{3} + 4 \right]_{0}^{1} - \left[18 - \frac{9}{2} \right]_{0}^{1} - \left(6 - \frac{1}{2} \right)_{1}^{2} = 12 + \frac{1}{3}$$

22. В p. 8

$$\frac{d}{dx}(\ln e^{3x}) = \frac{d}{dx}(3x \ln e) = \frac{d}{dx}(3x) = 3$$

23. D p. 8

$$g'(x) = 2g(x)$$
 \Rightarrow $\frac{g'(x)}{g(x)} = 2$

Integrating gives $\ln |g(x)| = 2x + C$

Then
$$g(x) = e^{2x + C}$$

Using the initial condition that g(-1) = 1, we have

$$g(-1) = e^{-2 + C} = 1 \implies C = 2$$

Hence
$$g(x) = e^{2x+2}$$

The notation is simpler if we let y = g(x). Then the equation is y' = 2y. The solution proceeds as before.

$$y'=2y$$
 \Rightarrow $\frac{y'}{y}=2$ \Rightarrow $\ln|y|=2x+C$
 \Rightarrow $y=\pm e^{2x+C}$ Since $g(-1)=1$, $y=e^{2x+C}$

24. D p. 9

We antidifferentiate the acceleration function to obtain the velocity.

$$a(t) = 3t + 2 \implies v(t) = \frac{3}{2}t^2 + 2t + C$$

$$v(1) = 4$$
 \Rightarrow $4 = \frac{3}{2} + 2 + C$ \Rightarrow $C = \frac{1}{2}$

Thus
$$v(t) = \frac{3}{2}t^2 + 2t + \frac{1}{2}$$

Antidifferentiate again to obtain $x(t) = \frac{1}{2}t^3 + t^2 + \frac{1}{2}t + D$

$$x(1) = 6 \implies 6 = \frac{1}{2} + 1 + \frac{1}{2} + D \implies D = 4$$

Then the position function is $x(t) = \frac{1}{2}t^3 + t^2 + \frac{1}{2}t + 4$.

Hence x(2) = 4 + 4 + 1 + 4 = 13.

25. B p. 9

$$y = \sqrt{3 + e^{x}}$$
 passes through (0,2).

$$\frac{dy}{dx} = \frac{e^x}{2\sqrt{3+e^x}}$$
; when $x = 0$, this has a value of $\frac{1}{4}$.

The equation of the tangent line at (0,2) is $y-2=\frac{1}{4}x$, or $y=2+\frac{1}{4}x$.

When
$$x = 0.08$$
, $y = 2 + \frac{1}{4}(.08) = 2.02$.

26. B p. 9

For
$$1 < t < 3$$
, the leaf rises 5 feet in 2 seconds.

$$s = \frac{5}{2} = 2.5 \text{ ft/sec.}$$

For
$$3 < t < 5$$
, the leaf falls 10 feet in 2 seconds.

$$s = \frac{10}{2} = 5 \text{ ft/sec.}$$

For
$$5 < t < 7$$
, the leaf rises 3 feet in 2 seconds.

$$s = \frac{3}{2} = 1.5 \text{ ft/sec.}$$

For
$$7 < t < 9$$
, the leaf falls 8 feet in 2 seconds.

$$s = \frac{8}{2} = 4 \text{ ft/sec.}$$

Since the slope of the graph is constant on each of these intervals, the only other interval of interest is 0 < t < 1. During that period, the leaf rises 1.5 feet in 1 second.

Then
$$s = \frac{1.5}{1} = 1 \text{ ft/sec.}$$

The maximum speed is 5 ft/sec, occurring in the interval 3 < t < 5.

27. C p. 10

Differentiating the given volume function with respect to t gives

$$\frac{dV}{dt} = \pi (12h - h^2) \frac{dh}{dt}$$

We know $\frac{dV}{dt} = 30\pi$ ft³/sec, and are interested in $\frac{dh}{dt}$ when h = 2 ft. Substituting these values, we have

$$30\pi = \pi \left(12 \cdot 2 - 2^2\right) \frac{dh}{dt}$$
. Hence $\frac{dh}{dt} = \frac{30\pi}{20\pi} = 1.5 \text{ ft/hr}$.

28. E p. 10

$$f(x) = 2x^{5/3} - 5x^{2/3} \qquad \Rightarrow \qquad f'(x) \ = \ \frac{10}{3} \, x^{2/3} - \frac{10}{3} \, x^{-1/3} \ = \frac{10}{3} \, x^{-1/3} \, (x-1)$$

The function f has two critical numbers:

x = 1 (where f'(x) = 0) and x = 0 (where f'(x) is undefined).

To determine the sign of the first derivative, we consider the intervals into which these critical numbers divide the domain of the function.

	x<0	0 < x < 1	x>1	
x-1/3		+	+	
x-1	-		+	
f'(x)	+		+	

f(x) is increasing if and only if f'(x) > 0. This occurs if x < 0 or x > 1.

Exam I Section I Part B — Calculators Permitted

I.
$$\lim_{x \to 1} f(x) = -2$$

False

II.
$$\lim_{h\to 0} \frac{f(2+h)-f(2)}{h} = f'(2) = 2$$

True

III.
$$\lim_{x \to -1^+} f(x) = 1 = f(-3)$$

True

2. C p. 11

$$f(x) = \sin^2 x$$

 $\Rightarrow f'(x) = 2 \sin x \cos x = \sin (2x)$

$$g(x) = .5 x^2$$

 \Rightarrow g'(x) = x

From a calculator graph of the functions f' and g', we see the only possible solution is x = 0.9.

3. B p. 12

Here are two possible calculator solutions.

I. First, look at graphs of the functions f and g, and find those intervals where the graph of f is above the graph of g.

The cubic function f(x) is above the quadratic function g(x) when x is between 0 and 2. Thus, the integral of f will have a larger value than the integral of g on the intervals [0,2].

=

II. Second, use the calculator to evaluate these definite integrals on the intervals [a,b] indicated.

		$\int_{a}^{b} f(x) dx$	$\int_{a}^{b} g(x) dx$	
I. $a = -1$	b=0	.917	1.333	False
II. $a = 0$	b=2	1.333	-1.333	True
III. $a = 2$	b=3	-3.583	1.333	False

$$y^{2} - 3x = 7 \qquad \Rightarrow \qquad 2y \frac{dy}{dx} - 3 = 0$$

$$\frac{dy}{dx} = \frac{3}{2y}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{2y \cdot 0 - 3 \cdot 2 \frac{dy}{dx}}{4y^{2}} = \frac{-6 \cdot \frac{3}{2y}}{4y^{2}} = -\frac{9}{4y^{3}}$$

I.
$$h(0) = g(f(0)) = g(5) = 0$$
 False

II. $h'(x) = g'(f(x)) \cdot f'(x)$

Thus $h'(2) = g'(f(2)) \cdot f'(2)$

$$= g'(1) \cdot \left(-\frac{1}{4}\right) = (-2) \cdot \left(-\frac{1}{4}\right) > 0$$

True

III. $h'(4) = g'(f(4)) \cdot f'(4) = g'(2) \cdot 1 = 0 \cdot 1 = 0$

True

6. D p. 13

If (x, e^x) is on the curve, then its distance from the origin is $D = \sqrt{x^2 + e^{2x}}$. Use a calculator graph of this distance function and find its minimum. At x = -0.426, the minimum distance of 0.78 is achieved.

7. B p. 13

In the figure, we need the area of the region ODBC. This can be calculated as area of trapezoid OABC – area DAB. The coordinates of points B and D are found using the calculator. Then the desired area is

$$a = \int_{0}^{1.858} (4 - x) dx - \int_{.739}^{1.858} (x - \cos x) dx$$

\$\approx 4.54.

$$y = 2x + \cos(x^{2})$$

$$y' = 2 - 2x \sin(x^{2})$$

$$y'' = -2\sin(x^{2}) - 4x^{2}\cos(x^{2})$$

Graph the second derivative on the interval [0,5]. There are eight zeros at which the sign changes. Each corresponds to an inflection point on the graph of y = f(x).

$$\frac{dV}{dt} = \sqrt{1+2^t} \quad \Rightarrow \quad V = \int_0^5 \sqrt{1+2^t} dt \approx 14.53 \text{ ft}^3.$$

We use the disk (washer) method.
$$V = \pi \int_{1}^{6} [f(x)]^2 dx$$

Using the Trapezoid Rule with five subintervals to approximate this, we obtain

$$V \approx T_5 = \frac{\pi}{2} \left[f^2(1) + 2 \cdot f^2(2) + 2 \cdot f^2(3) + 2 \cdot f^2(4) + 2 \cdot f^2(5) + f^2(6) \right]$$

$$= \frac{\pi}{2} \left[2^2 + 2 \cdot 3^2 + 2 \cdot 4^2 + 2 \cdot 3^2 + 2 \cdot 2^2 + 1^2 \right]$$

$$= \frac{\pi}{2} \cdot 81 \approx 127$$

11. E p. 14

We can do the problem algebraically: Solution I.

Given the position function $x(t) = (t+1)(t-3)^3$, we differentiate to obtain the velocity function:

 $v(t) = (t+1) \cdot 3(t-3)^2 + (t-3)^3 = 4t (t-3)^2$

For the velocity to be increasing, we need v'(t) > 0.

 $v'(t) = (t-3)^2 \cdot 4 + (4t) \cdot 2(t-3) = 12(t-3)(t-1).$

We find that v'(t) > 0 if t > 3 or t < 1.

Solution II.

Alternatively, we can do the problem graphically. Given the position x(t), the velocity is v(t) = x'(t).

For the velocity to be increasing, we need

v'(t) > 0. That is to say, we need

x''(t) > 0; hence we want the graph of x(t) to be concave up. From the graph of x(t) shown, we recognize that the curve is concave up

when x < 1 and again when x > 3.

12.

$$f(x) = \frac{\ln e^{2x}}{x-1} = \frac{2x}{x-1}$$

The inverse of this function is found by solving $x = \frac{2y}{y-1}$ for y.

$$x = \frac{2y}{y-1}$$
 \Rightarrow $xy - x = 2y$ \Rightarrow $xy - 2y = x$ \Rightarrow $y(x-2) = x$

$$\Rightarrow$$
 $g(x) = y = \frac{x}{x-2}$

Then
$$g'(x) = \frac{(x-2)-x}{(x-2)^2} = \frac{-2}{(x-2)^2}$$
. Hence $g'(3) = -2$.

13. C p. 15

Divide the integrand fraction and rewrite the second term.

$$\int \frac{e^{x^2 - 2x}}{e^{x^2}} dx = \int \left[1 - \frac{2x}{e^{x^2}} \right] dx = \int \left[1 - 2x e^{-x^2} \right] dx$$
$$= \int \left[1 + e^{-x^2} (-2x) \right] dx$$

In the second term of the integrand, the factor (-2x) is the derivative of the exponent in the factor e^{-x^2} . Hence we can perform the antidifferentiation:

$$\int \left[1 + e^{-x^2} (-2x) \right] dx = x + e^{-x^2} + C.$$

14. D p. 16

$$f(x) = (x+2)^{5} (x^{2}-1)^{4}$$

$$f'(x) = 5(x+2)^{4} (x^{2}-1)^{4} + 4(x^{2}-1)^{3} (2x) (x+2)^{5}$$

$$= (x+2)^{4} (x^{2}-1)^{3} [5(x^{2}-1) + 8x(x+2)]$$

$$= (x+2)^{4} (x+1)^{3} (x-1)^{3} [13x^{2} + 16x - 5]$$

The five critical points occur at x = -2, $x = \pm 1$, and at the two real solutions of the last quadratic factor. For the latter, $D = b^2 - 4ac = 16^2 - 4(13)(-5) = 516$. Since D > 0, there are two real solutions.

15. B p. 16

For continuity,
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) \implies 3 + 3b = m + b$$

For differentiability,
$$\lim_{x \to 1^{-}} f'(x) = \lim_{x \to 1^{+}} f'(x) \implies 3b + 4 = m$$

We solve these two equations simultaneously:

$$\begin{cases} 2b+3=m \\ 3b+4=m \end{cases} \Rightarrow b=-1 \text{ and } m=1.$$

16. D p. 17

Solution I. On each two-second time interval, we can approximate the speed by using the average of the speeds at the beginning and the end of the interval.

On the interval [0,2], speed ≈ 33 ft/sec. Distance traveled ≈ 66 ft. On the interval [2,4], speed ≈ 38 ft/sec. Distance traveled ≈ 76 ft. On the interval [4,6], speed ≈ 44 ft/sec. Distance traveled ≈ 88 ft. On the interval [6,8], speed ≈ 51 ft/sec. Distance traveled ≈ 102 ft. On the interval [8,10], speed ≈ 57 ft/sec. Distance traveled ≈ 114 ft. If we add these approximate distances traveled, we obtain 446 ft.

Solution II. Since v(t) > 0, on the interval [0, 10], the distance is the value of the integral $\int_{0}^{10} v(t) dt$.

Using Left and Right Riemann Sums, we approximate the integral as follows: $L_5 = 2[30 + 36 + 40 + 48 + 54] = 416$ $R_5 = 2[36 + 40 + 48 + 54 + 60] = 476$

Distance = $\int_{0}^{10} v(t)dt = \frac{L_5 + R_5}{2} = \frac{416 + 476}{2} = 446$

17. E p. 17

Rewrite the given formula: $F(x) = -5 + \int_{2}^{x} \sin(\frac{\pi t}{4}) dt$.

We obtain F'(x) by using the Fundamental Theorem:

$$F'(x) = 0 + \sin(\frac{\pi x}{4}).$$

We can then evaluate both F(2) and F'(2).

$$F(2) = -5 + \int_{2}^{2} \sin(\frac{\pi t}{4}) dt = -5 + 0 = -5$$

$$F'(2) = \sin(\frac{2\pi}{4}) = \sin\frac{\pi}{2} = 1.$$

Then F(2) + F'(2) = -5 + 1 = -4.

Exam I Section II Part A — Calculators Permitted

1. p. 19

(a) Since the graph of f is a straight line here, f'(3) = slope $= \frac{-3-3}{4-2} = -3.$

 $2: \begin{cases} 1: \text{difference quotient} \\ 1: \text{answer} \end{cases}$

(b) Using a linear approximation between (-1, -1) and (1, 2), $g'(0) = \frac{2 - (-1)}{1 - (-1)} = \frac{3}{2}$.

2: $\begin{cases} 1: \text{difference quotient} \\ 1: \text{answer} \end{cases}$

- (c) h(x) = g[f(x)]
 - i) h(2) = g[f(2)] = g(3) = 0.

 $3: \begin{cases} 1:h(2) \\ 2:h'(3) \end{cases}$

- ii) $h'(x) = g'[f(x)] \cdot f'(x)$ $h'(3) = g'[f(3)] \cdot f'(3) = g'(0) \cdot (-3) = \frac{3}{2}(-3) = -\frac{9}{2}.$
- (d) Using areas, we approximate $\int_{0}^{4} f(x) dx$ as a trapezoid plus a triangle minus a triangle.

2:answer

$$\int_{0}^{4} f(x) dx = \frac{1}{2} (2)(1+3) + \frac{1}{2} (1)(3) - \frac{1}{2} (1)(3) = 4.$$

To find the coordinates of Q, we write the equation of the tangent to the graph of y = f(x) at the point P(-2,8).

$$f'(x) = 3x^2 + 6x - 1.$$

Using x = -2, we find f'(-2) = 12 - 12 - 1 = -1. The line through the point P(-2,8) with slope m = -1 is y - 8 = -1(x + 2) which can be rewritten: y = -x + 6.

We now solve simultaneously the equation of the cubic and the equation of the tangent line.

$$\begin{cases} y = x^3 + 3x^2 - x + 2 \\ y = -x + 6 \end{cases}$$

$$\Rightarrow x^3 + 3x^2 - x + 2 = -x + 6$$

$$\Rightarrow x^3 + 3x^2 - 4 = 0$$

$$\Rightarrow (x + 2)(x^2 + x - 2) = 0$$

$$\Rightarrow (x + 2)(x + 2)(x - 1) = 0$$

There is the known intersection point where x = -2. The new point has an x-coordinate of x = 1. The corresponding y-coordinate is y = 5. Hence Q is the point (1,5).

Area of region $A \cup B = \int_{-2}^{1} [(-x+6) - (x^3 + 3x^2 - x + 2 dx)] = 6.75.$ Area of region $A = \int_{-1}^{1} [5 - (x^3 + 3x^2 - x + 2)] dx = 4.$

By subtraction, Area of region B = 2.75. The ratio of these areas is $\frac{\text{Area of region A}}{\text{Area of region B}} = \frac{4}{2.75} = \frac{16}{11} = 1.455.$

4: $\begin{cases}
1: \text{area of region } A \\
1: \text{area of region } B \\
2: \text{ratio}
\end{cases}$

(a) Solution I.

Since the line y = 3x + c has slope m = 3, we find the point on the curve $y^2 = 6x$ where the tangent has slope 3.

2:answer

Solution II.

Differentiating implicitly, we have $2y \cdot \frac{dy}{dx} = 6$.

Since
$$\frac{dy}{dx} = 3$$
, then $y = 1$ and therefore $x = \frac{1}{6}$.

The particular line that passes through $(\frac{1}{6}, 1)$ is obtained by using

those coordinates in y = 3x + c. We find $c = \frac{1}{2}$.

We see from the graph above that if c is made smaller than the value that gives tangency, there will be two intersections.

Hence we want $c < \frac{1}{2}$.

Solving the two equations $y^2 = 6x$ and y = 3x + c simultaneously leads to

$$y^2 - 2y + 2c = 0 (*)$$

This has two solutions if its discriminant is positive.

$$4-8c > 0 \Rightarrow 4 > 8c \Rightarrow \frac{1}{2} > c$$

(b) Substituting $c = -\frac{3}{2}$ into equation (*) above gives $y^2 - 2y - 3 = 0$.

Thus (y-3)(y+1) = 0, so y = -1 or 3.

Then $x = \frac{y+3/2}{3}$ and $x = \frac{y^2}{6}$ express the curves with x in terms of y.

The area of the region can be written: $\operatorname{area} = \int_{-1}^{3} \left[\frac{y+3/2}{3} - \frac{y^2}{6} \right] dy$

With a calculator, this is evaluated as $\frac{16}{9} = 1.778$.

(c) Substituting c = 0 into equation (*) gives $y^2 - 2y = 0$.

Thus y(y-2) = 0. Hence y = 0 or y = 2, so x = 0 or $x = \frac{2}{3}$.

By the washer method,

$$Vol = \pi \int_0^{2/3} (6x - 9x^2) dx = \pi \left[3x^2 - 3x^3 \right]_0^{2/3} = \pi \left[3 \cdot \frac{4}{9} - 3 \cdot \frac{8}{27} \right] = \frac{4\pi}{9} = 1.396$$

4: { 1: limits 2: integrand 1: answer

Exam I Section II Part B — No Calculators

4. p. 22

(a) We calculate slopes at each of the fourteen points.

At
$$(-2,2)$$
, $m = -4$.
At $(0,2)$, $m = -2$.
At $(2,2)$, $m = 0$.
At $(2,1)$, $m = 1$.
At $(2,1)$, $m = 1$.
At $(0,0)$, $m = 0$.
At $(-1,2)$, $m = -1$.
At $(-1,2)$, $m = -1$.
At $(-1,1)$, $m = -2$.
At $(-1,1)$, $m = 0$.
At $(0,-1)$, $m = 1$.
At $(0,1)$, $m = -1$.
At $(0,1)$, $m = -1$.

Then draw short line segments through each of the points with the appropriate slope.

Solution curve must

1: go through (-1,1);
1: follow the given
2: slope lines and extend to the boundary of the slope field.

- (c) At the point (1,0), $\frac{dy}{dx} = 1 0 = 1$. Hence the slope of the straight line solution must be m = 1. The line through the point (1,0) with slope m = 1 is y 0 = 1(x 1). Hence the solution is y = x 1.
- (d) Given the function $y = x 1 + Ce^{-x}$, we have $\frac{dy}{dx} = 1 Ce^{-x}$. We can also write the expression x y in terms of x: $x y = x (x 1 + Ce^{-x})$. This simplifies to $x y = 1 Ce^{-x}$. Thus, if $y = x 1 + Ce^{-x}$, then $\frac{dy}{dx} = x y$.
- 3: $\begin{cases} 1: \frac{dy}{dx} = 1 Ce^{-x} \\ 1: \text{substitution} \\ 1: \text{conclusion} \end{cases}$

(a) f'(3) = 2. Hence the slope of the tangent line at the point (3,1) is m = 2. Then an equation of the tangent line (in point-slope form) is:

$$y - 1 = 2(x - 3)$$
.

(b) f has critical values at the points where x = 1 and x = -3, because f'(x) = 0.

To the immediate left of x = 1, f'(x) < 0, implying f is decreasing there.

To the immediate right of x = 1, f'(x) > 0, implying f is increasing there.

Since f is decreasing to the left of x = 1 and increasing to the right of x = 1, there is a local minimum there. Both to the left and right of x = -3, f'(x) < 0, so there is no relative max/min there.

- (c) f''(2) is the slope of the graph of f'(x) at x = 2. Draw an estimate for the tangent line to f'(x) at x = 2. Pick two points, such as (1.2, 1) and (3, 2.5), and the slope is $\frac{2.5 1}{3 1.2} = \frac{1.5}{1.8} = \frac{5}{6}$. (Any answer between 0.5 and 1.25 would be satisfactory.)
- (d) f has an inflection point wherever f' has a relative extreme point. This occurs at x = -3, -1, 3.
- (e) The only candidates for maximum value are the endpoints x=0 and x=4, and the critical number at x=1. In part (b) it was established that f has a local minimum at the x=1. So the maximum value occurs at an endpoint. At x=0, $f(0)=\int\limits_0^x f'(x)\ dx=0$. Since the area of the region below the x-axis is smaller the the area of the region above the x-axis, $\int\limits_0^4 f'(x)\ dx>0.$ Hence f has its maximum value for that interval at the right-hand endpoint, x=4.

2: { 1:slope 1:tangent equation

1:answer

 $2: \begin{cases} 1: answer \\ 1: justification \end{cases}$

2:answer

(a)
$$\operatorname{area} = \int_{0}^{\operatorname{Arccos} k} (\cos x - k) dx = \left[\sin x - kx\right]_{0}^{\operatorname{Arccos} k}$$

$$= \sin(\operatorname{Arccos} k) - k \operatorname{Arccos} k$$

$$= \sin(\operatorname{Arccos} k) - k \operatorname{Arccos} k$$

$$= \sin(\operatorname{Arccos} k) - k \operatorname{Arccos} k$$

$$= \sqrt{1 - k^{2}} - k \operatorname{Arccos} k$$

(b)
$$k = \frac{1}{2}$$
 \Rightarrow $A = \frac{\sqrt{3}}{2} - \frac{1}{2} Arccos \frac{1}{2} = \frac{\sqrt{3}}{2} - \frac{\pi}{6} \approx 0.342$

2:answer

(c) In general,
$$A = \sqrt{1 - k^2} - k \operatorname{Arccos} k.$$
Then $\frac{dA}{dt} = \frac{-k \frac{dk}{dt}}{\sqrt{1 - k^2}} - (\operatorname{Arccos} k) \frac{dk}{dt} - k \cdot \frac{-1}{\sqrt{1 - k^2}} \frac{dk}{dt}$

$$= \frac{dk}{dt} \left[\frac{-k}{\sqrt{1 - k^2}} - \operatorname{Arccos} k + \frac{k}{\sqrt{1 - k^2}} \right]$$

$$= (-\operatorname{Arccos} k) \frac{dk}{dt} .$$
With $k = \frac{1}{2}$ and $\frac{dk}{dt} = \frac{1}{\pi}$, we obtain $\frac{dA}{dt} = -\frac{\pi}{3} \cdot \frac{1}{\pi} = -\frac{1}{3}$.

$$\begin{array}{c}
2:\frac{dA}{dt} \\
4: \begin{cases}
1: \text{substitution} \\
1: \text{answer}
\end{cases}$$